Комплексы дыхательной цепи. Дыхательная цепь Дыхательная цепь биохимия простое

Главные компоненты дыхательной цепи (рис. 13.2) приведены последовательно в порядке возрастания окислительно-восстановительного потенциала в табл. 12.1. Атомы водорода или электроны перемещаются по цепи от более электроотрицательных компонентов к более электроположительному кислороду, изменение окислительно-восстановительного потенциала при переходе от системы к системе составляет 1,1 В.

Главная дыхательная цепь в митохондриях начинается от -зависимых дегидрогеназ, проходит через флавопротеины и цитохромы и заканчивается молекулярным кислородом. Не все субстраты связаны с дыхательной цепью через -зависимые дегидрогеназы; некоторые из них, имеющие относительно высокий окислительно-восстановительный потенциал (например, система фумарат/сукцинат, см. табл. 12.1), связаны с флавопротеиновыми дегидрогеназами, которые в свою очередь связаны с цитохромами дыхательной цепи (рис. 13.3).

В последнее время установлено, что в дыхательной цепи имеется еще один переносчик, связывающий флавопротеины с цитохромом b, обладающим самым низким среди цитохромов окислительновосстановительным потенциалом. Этот переносчик, названный убихиноном или коферментом Q (рис. 13.4), в аэробных условиях находится в митохондриях в форме окисленного хинона, а в анаэробных условиях - в восстановленной хинольной форме. Кофермент Q является компонентом митохондриальных липидов; среди других липидов преобладают

Рис. 13.1. Главные источники восстановительных эквивалентов и их связь с митохондриальной дыхательной цепью. Основным внемитохондриальным источником является NADH, который образуется в ходе гликолиза.

фосфолипиды, являющиеся частью митохондриальной мембраны. Структура кофермента Q сходна со структурой витаминов К и Е. Близкую структуру имеет и пластохинон, находящийся в хлоропластах. Все эти вещества имеют в своей структуре полиизопреноидную боковую цепь. Содержание кофермента Q значительно превосходит содержание других компонентов дыхательной цепи (по параметру стехиометрии); это позволяет предположить, что кофермент Q является подвижным компонентом дыхательной цепи, который получает восстановительные эквиваленты от фиксированных флавопротеиновых комплексов и передает их на цитохромы.

Дополнительным компонентом, находящимся в функционально активных препаратах дыхательной цепи, является железо-серный белок, FeS (негемовое железо). Он ассоциирован с флавопротеинами (металлофлавопротеинами) и с цитохромом b. Железо и сера, как полагают, участвуют в окислительновосстановительном процессе, протекающем по одноэлектронному механизму (рис. 13.5).

Современные представления о последовательности главных компонентов дыхательной цепи отражены на рис. 13.3. На электроотрицательном конце цепи дегидрогеназы катализируют перенос электронов от субстратов на NAD, находящийся в дыхательной цепи. Это происходит по двум путям. В тех случаях, когда субстратами служат а-кетокислоты, пируват и кетоглутарат, в переносе электронов на NAD участвуют сложные дегидрогеназные системы, содержащие липоат и FAD. Перенос электронов другими дегидрогеназами, использующими в качестве субстратов L(+)-3-гидроксиацил-СоA, D(-)-3-гидрокси-бутират, пролин, глутамат, малат и изоцитрат, происходит прямо на NAD дыхательной цепи.

Восстановленный NADH в дыхательной цепи в свою очередь окисляется металлофлавопротеином -дегидрогеназой. Этот фермент содержит и FMN и прочно связан с дыхательной цепью. Кофермент Q служит коллектором восстановительных эквивалентов, которые поставляются рядом субстратов через флавопротеиновые дегидрогеназы в дыхательную цепь. К числу этих субстратов относятся сукцинат, холин, глицерол-3-фосфат, саркозин, диметилглицин и ацил-СоА (рис. 13.3). Флавиновым компонентом этих дегидрогеназ является, по-видимому, FAD. Поток электронов от кофермента Q далее идет через ряд цитохромов к молекулярному кислороду (рис. 13.3). Цитохромы выстроены в порядке возрастания окислительно-восстановительного

Рис. 13.2. Транспорт восстановительных эквивалентов по дыхательной цепи.

Рис. 13.3. Компоненты дыхательной цепи митохондрий. FeS находится в цепи «на -стороне» ФП или Цит b. Цит- цитохром; ЭПФП-электронпереносящий флавопротеин; FeS-железо-серный белок; ФП-флавопротеин; Q-убихинон.

Рис. 13.4. Структура убихинона (Q); п-число изопреноидных звеньев, варьирующее от 6 до 10, т.е.

Рис. 13.5. Железо-серный центр железо-серного белка. -кислотолабильная сера; Рг-апобелок; остаток цистеина. Некоторые железо-серные белки содержат 2 атома железа и 2 атома серы потенциала. Терминальный цитохром (цитохромоксидаза) осуществляет конечную стадию процесса - перенос восстановительных эквивалентов на молекулярный кислород. Как уже упоминалось, эта ферментная система содержит медь - непременный компонент истинных оксидаз. Цитохромоксидаза имеет очень высокое сродство к кислороду, что позволяет дыхательной цепи функционировать с максимальной скоростью до тех пор, пока в ткани не будет практически исчерпан . Эта катализируемая цитохромоксидазой реакция является необратимой; она определяет направление движения восстановительных эквивалентов в дыхательной цепи, с которым сопряжено образование АТР.

В отношении структурной организации дыхательной цепи был выдвинут ряд предположений. Существенно то, что молярные соотношения между компонентами являются почти постоянными. Функционирующие компоненты дыхательной цепи встроены во внутреннюю митохондриальную мембрану

Рис. 13.6. Предполагаемые участки ингибирования дыхательной цепи специфическими лекарственными веществами, химическими реагентами и антибиотиками. Указаны участки, где предположительно происходит сопряжение с фосфорилированием. BAL-димеркапрол; TTFA - хелатобразующий реагент на железо. Комплекс I - NADH: убихинон-оксидоредуктаза; комплекс II - сукцинат: убихинон-оксидоредуктаза; комплекс III - убихинол: феррицитохром с-оксидоредуктаза; комплекс IV - ферроцитохром с: кислород-оксидоредуктаза. Другие сокращения - такие же, как и на рис. 13.3.

в виде четырех белково-липидных комплексов дыхательной цепи. На этом основании был сделан вывод об определенной пространственной ориентации этих комплексов в мембране. Цитохром с является единственным растворимым цитохромом и наряду с коферментом Q служит относительно мобильным компонентом дыхательной цепи, осуществляющим связь между фиксированными в пространстве комплексами (рис. 13.6).


Комплексы дыхательной цепи

  • Комплекс III (Цитохром bc1 комплекс) переносит электроны с убихинона на два водорастворимых цитохрома с, расположенных на внутренней мембранемитохондрии. Убихинон передаёт 2 электрона, а цитохромы за один цикл переносят по одному электрону. При этом туда также переходят 2 протона убихинона и перекачиваются комплексом.

NADPH + NAD+ ↔ NADP+ + NADH.

FeS -железно-серные центры.

ПОСМОТРЕТЬ ЕЩЕ:

. Дыхательная электронтранспортная цепь

Дыхательная электронтранспортная цепь (ЭТЦ, ETC,) - система структурно и функционально связанных трансмембран-ных белков и переносчиков электронов. ЭТЦ позволяет запасти энергию, выделяющуюся в ходе окисления НАД∙Н и ФАДН2 молекулярным кислородом (в случае аэробного дыхания) или иными веществами (в случае анаэробного) в форме трансмембранного протонного потенциала за счёт по-следовательного переноса электрона по цепи, сопряжённого с перекачкой протонов через мембрану. Компоненты дыхательной цепи. Дыхательная цепь включает три белковых комплекса (комплексы I, III и IV), встроенных во внутреннюю митохондриальную мембрану, и две подвижные молекулы-пе-реносчики - убихинон (кофермент Q) и цитохром с. Сукцинатдегидрогеназа, принадлежащая собственно к цитрат-ному циклу, также может рассматриваться как комплекс II дыхательной цепи. АТФ-синтаза иногда называется комплексом V, хотя она не принимает участия в переносе электронов. Ком-плексы дыхательной цепи построены из множества полипептидов и содержат ряд различных окислительно-восстановительных коферментов, связанных с белками. К ним принадлежат флавин [ФМН (FMN) или ФАД (FAD), в комплексах I и II], железо-серные центры (в I, II и III) и группы гема (в II, III и IV). Детальная структура большинства комплексов еще не установлена. Электроны поступают в дыхательную цепь различ-ными путями. При окислении НАДН + Н+ комплекс I переносит электроны через ФМН и Fe/S-центры на убихинон. Образующиеся при окислении сукцината, ацил-КоА и других субстратов электроны переносятся на убихинон комплексом II или другой митохондриальной дегидрогеназой через связанный с ферментом ФАДН2 или флавопротеин (см.

Цепь переноса электронов (цпэ).

с. 166), При этом окисленная форма кофермента Q восстанавливается в ароматический уби-гидрохинон. Последний переносит электроны в комплекс III, который поставляет их через два гема b, один Fe/S-центр и гем с1 на небольшой гемсодержащий белок цитохром с. Последний переносит электроны к комплексу IV, цитохром с-оксидазе. Цитохром с-оксидаза содержит для осуществления окислительно-восстановительных реакций два медьсодержащих центра (CuA и CuB) и гемы а и а3, через которые электроны, наконец, поступают к кислороду. При восстановлении О2 образу-ется сильный основной анион О2-, который связывает два протона и переходит а воду. Поток электронов сопряжен с об-разованным комплексами I, III и IV протонным градиентом. Орга-низация дыхательной цепи. Перенос протонов комплексами I, III и IV протекает векторно из матрикса в межмембранное пространство. При переносе электронов в дыхательной цепи повышается концентрация ионов H+, т. е. понижается значение рН. В интактных митохондриях по существу только АТФ-синтаза позволяет осуществить обратное движение протонов в матрикс. На этом основано важное в регуляторном отношении сопряжение электронного переноса с образованием АТФ. Убихинон благодаря неполярной боковой цепи свободно перемещается в мембране. Водорастворимый цитохром с находится на внешней стороне внутренней мембраны. Окисление НАДН (NADH) комплексом I происходит на внутренней стороне мембраны, а также в матриксе, где происходит также цитратный цикл и β-окисление - самые важные источники НАДН. В матриксе протекают, кроме того, восстановление O2 и образование АТФ (ATP). Полу-ченный АТФ переносится по механизму антипорта (против АДФ) в межмембранное пространство (см. с. 214), откуда через порины проникает в цитоплазму

Комплексы дыхательной цепи

  • Комплекс I (НАДН дегидрогеназа) окисляетНАД-Н, отбирая у него два электрона и перенося их на растворимый в липидах убихинон, который внутри мембраныдиффундирует к комплексу III. Вместе с этим, комплекс I перекачивает 2 протона и 2электрона из матрикса в межмембранное пространство митохондрии.
  • Комплекс II (Сукцинат дегидрогеназа) не перекачивает протоны, но обеспечивает вход в цепь дополнительных электронов за счёт окисления сукцината.
  • Комплекс III (Цитохром bc1 комплекс) переносит электроны с убихинона на два водорастворимых цитохрома с, расположенных на внутренней мембранемитохондрии. Убихинон передаёт 2 электрона, а цитохромы за один цикл переносят по одному электрону.

Цепь переноса электронов митохондрий

При этом туда также переходят 2 протона убихинона и перекачиваются комплексом.

  • Комплекс IV (Цитохром c оксидаза) катализирует перенос 4 электронов с 4 молекул цитохрома на O2 и перекачивает при этом 4 протона в межмембранное пространство. Комплекс состоит из цитохромов a и a3, которые, помимо гема, содержат ионы меди.

Кислород, поступающий в митохондрии из крови, связывается с атомом железа в геме цитохрома a3 в форме молекулы O2. Каждый из атомов кислорода присоединяет по два электрона и двапротона и превращается в молекулу воды.

Субстрат, образованный в цикле Кребса, подвергается дегидрированию (отщеплению водорода), в результате чего выделяется энергия, идущая на образование АТФ, а образовавшиеся в процессе электроны и протоны соединяются с кислородом и образуют воду. Восстановление молекулы О2 происходит в результате переноса 4 электронов. При каждом присоединении к кислороду 2 электронов, поступающих к нему по цепи переносчиков, из матрикса поглощаются 2 протона, в результате чего образуется молекула Н2О.

Электроны передаются по цепи переносчиков, которые находятся в самой мембране. Переносчики, принимая электроны, окисляются, а отдавая следующему, переносчику восстанавливаются. В конце ЦПЭ, электроны переходят на кислород.

Протоны вытесняются за пределы мембраны митохондрии.

Вытеснение протонов происходит за счет энергии движения электронов внутри мембраны.

Протоны не могут самопроизвольно вернуться назад в мембрану, поэтому на внешней ее стороне накапливается положительный заряд.

Протоны в конце ЦПЭ, снова проходят внутрь через специальный белок- АТФ-синтетазу (5-й фактор) и участвуют в образовании воды. При прохождении протона через АТФ-синтетазу, выделяется энергия, которая идет на синтез АТФ.

В результате ОВР реакций переносчиков из АДФ и неорганического фосфата образуется АТФ.

Важно: Без присутствия АДФ окисления не происходит!

Субстраты NAD- и NADР-зависимых дегидрогеназ находятся в матриксе митохондрий и в цитозоле.

Основные переносчики электронов встроены во внутреннюю мембрану митохондрий и организованы в 4 комплекса, расположенных в определённой последовательности (векторно). В этой последовательности их стандартные окислительно-восстановительные потенциалы становятся более положительными по мере приближения к кислороду

1.Субстрат сначала окисляется дегидрогеназой- NAD+, в результате кофермент NAD+ принимает протон и переходит в NADН.

Большинство дегидрогеназ, поставляющих электроны в ЦПЭ, содержат NAD+. Они катализируют реакции типа:

R-CHOH-R1 + NAD+ ↔ R-CO-R1 + NADH + H+.

NADРН не является непосредственным донором электронов в ЦПЭ, а используется почти

исключительно в восстановительных биосинтезах. Однако возможно включение электронов с NADPH в ЦПЭ благодаря действию пиридиннуклеотид трансгидрогеназы, катализирующей реакцию:

NADPH + NAD+ ↔ NADP+ + NADH.

Флавиновые дегидрогеназы содержат в качестве коферментов FAD или FMN.

FAD служит акцептором электронов от многих субстратов в реакциях типа:

R-CH2-CH2-R1 + E (FAD) ↔ R-CH=CH-R1 + E (FADH2),

где Е — белковая часть фермента.

Большинство FAD-зависимых дегидрогеназ — растворимые белки, локализованные в матриксе митохондрий. Исключение составляет сукци-натдегидрогеназа, находящаяся во внутренней мембране митохондрий

Или субстрат окисляется дегидрогеназой- FAD+, в результате чего кофермент FAD принимает протон и становится FADН2.

Если окисляется сукцинат (янтарная кислота), то окисление идет сукцинатдегидрогеназой сразу по FAD+.

FAD передает Коферменту Q (убихинон) электроны через FES.

Важно: убихинон не является белком. Все остальные переносчики- белки!

FeS -железно-серные центры.

Предыдущая12345678910111213Следующая

ПОСМОТРЕТЬ ЕЩЕ:

В целом работа дыхательной цепи заключается в следующем:

Дыхательная цепь переноса электронов

Образующиеся в реакциях катаболизма НАДН и ФАДН2 передают атомы водорода (т.е. протоны водорода и электроны) на ферменты дыхательной цепи.

2. Электроны движутся по ферментам дыхательной цепи и теряют энергию.

3. Эта энергия используется на выкачивание протонов Н+ из матрикса в межмембранное пространство.

4. В конце дыхательной цепи электроны попадают на кислород и восстанавливают его до воды.

5. Протоны Н+ стремятся обратно в матрикс и проходят через АТФ-синтазу.

6. При этом они теряют энергию, которая используется для синтеза АТФ.

Общий принцип окислительного фосфорилирования

Восстановленные формы НАД и ФАД окисляются ферментами дыхательной цепи, благодаря этому происходит присоединение фосфата к АДФ, т.е. фосфорилирование . Поэтому весь процесс целиком получил название окислительное фосфорилирование .

Дыхательная цепь

Всего цепь переноса электронов включает в себя около 40 разнообразных белков, которые организованы в 4 больших мембраносвязанных мульферментных комплекса. Также существует еще один комплекс, участвующий не в переносе электронов, а синтезирующий АТФ.

Блок-схема дыхательной цепи


Переносчики электронов

1. Цитохромы с1, c, a, a3 (простетическая группа – гем) располагаются в различных участках дыхательной цепи, цитохром с – подвижный водорастворимый белок, перемещается по внешней стороне мембраны между 3 и 4-ым комплексами. Цитохромы aa3 содержат гем А. Он содержит вместо метильной (-СНз) и винильной (-СН=СН2) групп формильную (-СОН) группу и углеводородную цепь соответственно. Вто-рая особенность — наличие ионов меди в специальных белковых центрах.

Сu+ <-> Сu2+ + e и Fe2+ <-> Fe3+ + e

2. Железо-серные белки (FeS) – негемовые белки, функционируют совместно с флавиновыми ферментами (1, 2, 3-й комплексы)


3. FMN (комплекс 1): FMN + NADH + H+ ———FMNH2 + NAD+

(NAD+ + 2e + 2H+ ————- NADH + H+)

KoQ (убихинон) – небелковый переносчик, комплекс 3.

Длинный гидрофобный «хвост» изопрена обеспечивает подвижность убихинона в липидном бислое.

KoQ и цитохром с – мобильные, все остальные – интегральные белки.



Строение ферментативных комплексов дыхательной цепи

Комплекс. НАДН-КоQ-редуктаза

Этот комплекс также имеет рабочее название НАДН-дегидрогеназа , содержит 1ФМН, 6 железосерных белков.

1. NADH + H+ + FMN ———2e + 2H+——— NAD+ + FMNH2

2. FMNH2 ————2e——— Fex Sx (Fe2+ <-> Fe3+ + e)

3. Fex Sx ————2e——— KoQ

Функция

1. Принимает электроны от НАДН и передает их на коэнзим Q (убихинон).

2. Переносит 4Н+ на наружную поверхность внутренней митохондриальной мембраны.

В короткой дыхательной цепи окисляется субстрат, для которых первичным акцептором электронов является флапротеид (отсутствует этап окисления субстрата НАД-ДГ). Вещества короткой цепи: янтарная кислота, активные формы жирных кислот, глицерофосфат).

Первая реакция окисления:

В последующем ФАДН 2 при участии (FeS*) + КоQ, окисляется:

Восстановленный КоQ как и в длиной дыхательной цепи системой цитохромов:

Эти дыхательные цепи могут быть разделены на структурно-функциональные форагменты, которые называются окислительные комплексы. В длинной цепи выделяют 3 комплекса, а в короткой 2.

1. Располагается между НАДН 2 и КоQ и включает в себя ФП и FeS комплекс.

2. КоQН 2 -ДГ (цитохром С-редуктазный комплекс) располагается между КоQ и цС и включает в себя цВ, FeS, белки, цС 1

3. Цитохромоксидазный комплекс – окисляет цС и включает в себя цаа 3

4. Сукцинатдегидрогеназный комплекс включает ФП* и FeS, сукцинатДГ

Каждый дыхательный комплекс может быть выключен из работы дыхательной цепи определенными веществами – ингибиторами.

Первый комплекс – амитал, барбитураты, ротенол

Второй комплекс – малонат

Третий комплекс – антимицин А

Четвертый комплекс – Н 2 S, цианиды, СО

Внутримитохондриальное окисление тесно связано с энергетическим обменом. Энергетический обмен – сбалансированность протекания реакций образования и реакций использования энергии.

Реакции идущие с высвобождением энергии называется экзоргиническими реакциями с поглощением эндорганическими. Основным экзорганическим процессом в организме является транспорт электронов по дыхательной цепи. Начальные компоненты НАД окисленный, НАД восстановленный:

Поэтому в ЦПЭ происходит перемещение электронов с большой энергией, в процессе транспорта электронов энергия высвобождается. Та энергия которая может быть использована на выполнение какой-то работы – свободная энергия . В дыхательной цепи энергия рассчитывается.

ΔF = -23*n*Δе ,

где n- количество переносимых электронов на атом О 2 (2е), Δе – перепад ОВП между началом и концом ЦПЭ.

Δе = 0,82 –(-0,32)=1,14В

ΔF = -23*2*1,14 = -52 ккал/моль

Эта энергия может быть использована организмом на выполнение различных процессов:

  • Механических – сокращение мышц
  • Химических – на синтез новых веществ
  • Осмотических – перенос ионов против градиента концентрации
  • Электрических – возникновение потенциалов в нервной системе

Все организмы в зависимости от энергии, которую они используют делят на два вида: фототрофы – могут использовать энергию солнечного света, хемовары – могут использовать энергию только химических связей особых макроэргических веществ.

Макроэргические вещества – вещества при гидролизе связей которых высвобождается энергия более 5 ккал/моль. К ним относят фосфоенолпируват, креатинфосфат, 1,3-дифосфоглицеринфосфат, ацилы жирных кислот, АТФ (ГТФ, ЦТФ, УЦФ). Среди перечисленных макроэргов центральное место занимает АТФ. АТФ является аккумулятором и источником химической энергии. В молекулярном АТФ заключена энергия на 7,3 ккал/моль (в стандартных условиях) и до 12 ккал/моль в физиологических условиях. Состав АТФ: аденил-рибоза-Н 3 РО 4 - Н 3 РО 4 -Н 3 РО 4 . Синтезируется АТФ из АДФ. Распад АТФ является экзоорганическим процессом. Основным источником энергии для синтеза АТФ является перенос электронов по дыхательной цепи. Присоединение Н 3 РО 4 называется – фосфолирироваием.

Окислительное фосфолирирование

Процесс синтеза АТФ из АДФ и Н 3 РО 4 , за счет энергии транспорта по ЦПЭ. Процессы окисления дыхательной цепи и синтеза АТФ тесно сопряжены. При этом ведущим процессом является транспорт электронов, сопутствующим является фосфолирирование. Участки дыхательной цепи на которых происходит синтез АТФ называются участками сопряжения. Их в длинной цепи три (1, 3, 4 – окислительные комплексы), в короткой дыхательной цепи их два (3,4). Если вещество окисляется в дыхательной цепи, то максимум синтезируются три молекулы АТФ. Эффективность сопряжения окислительного фосфолирирования выражается коэффициентом фосфолирирования. Он показывает сколько молекул Н 3 РО 4 присоединяется к АДФ при переносе двух электронов на один атом кислорода то есть сколько синтезируется молекул АТФ на один атом кислорода. Для длинной цепи коэффициент = 3 для короткой 2.

Механизм окислительного фосфолирирования.

Впервые в тридцатые годы акт синтеза АТФ в процессе окисления был выявлен отечественным биохимиком Энгельгардтом. Основной гипотезой объяснения механизма окислительного фосфолирирования стала хемоосмотическая теория Митчелла. Согласно ей при транспорте электронов по дыхательной цепи возникает протонный потенциал, который и аккумулирует освободившийся при переносе электрона энергию. В последствии протонный потенциал используется для синтеза АТФ. Возникновение протонного потенциала связано непроницаемость для протонов внутренней мембраны митохондрий. В результате транспорта электронов по дыхательной цепи одновременно происходит выталкивание Н + из матрикса в межмембранное пространство. Переносится 6 – 10 Н+.

14.1.1. В пируватдегидрогеназной реакции и в цикле Кребса происходит дегидрирование (окисление) субстратов (пируват, изоцитрат, α-кетоглутарат, сукцинат, малат). В результате этих реакций образуются НАДН и ФАДН2 . Эти восстановленные формы коферментов окисляются в митохондриальной дыхательной цепи. Окисление НАДН и ФАДН2 , протекающее сопряжённо с синтезом АТФ из АДФ и Н3 РО4 называется окислительным фосфорилированием .

Схема строения митохондрии показана на рисунке 14.1. Митохондрии представляют собой внутриклеточные органеллы, имеющие две мембраны: наружную (1) и внутреннюю (2). Внутренняя митохондриальная мембрана образует многочисленные складки - кристы (3). Пространство, ограниченное внутренней митохондриальной мембраной, носит название матрикс (4), пространство, ограниченное наружной и внутренней мембранами, - межмембранное пространство (5).

Рисунок 14.1. Схема строения митохондрии.

14.1.2. Дыхательная цепь - последовательная цепь ферментов, осуществляющая перенос ионов водорода и электронов от окисляемых субстратов к молекулярному кислороду - конечному акцептору водорода. В ходе этих реакций выделение энергии происходит постепенно, небольшими порциями, и она может быть аккумулирована в форме АТФ. Локализация ферментов дыхательной цепи - внутренняя митохондриальная мембрана.

Дыхательная цепь включает четыре мультиферментных комплекса (рисунок 14.2).

Рисунок 14.2. Ферментные комплексы дыхательной цепи (обозначены участки сопряжения окисления и фосфорилирования):

I. НАДН-KoQ-редуктаза (содержит промежуточные акцепторы водорода: флавинмононуклеотид и железосерные белки). II. Сукцинат-KoQ-редуктаза (содержит промежуточные акцепторы водорода: ФАД и железосерные белки). III. KoQН2 -цитохром с-редуктаза (содержит акцепторы электронов: цитохромы b и с1 , железосерные белки). IV. Цитохром с-оксидаза (содержит акцепторы электронов: цитохромы а и а3 , ионы меди Cu2+ ).

14.1.3. В качестве промежуточных переносчиков электронов выступают убихинон (коэнзим Q) и цитохром с.

Убихинон (KoQ) - жирорастворимое витаминоподобное вещество, способен легко диффундировать в гидрофобной фазе внутренней мембраны митохондрий. Биологическая роль коэнзима Q - перенос электронов в дыхательной цепи от флавопротеинов (комплексы I и II) к цитохромам (комплекс III).

Цитохром с - сложный белок, хромопротеин, простетическая группа которого - гем - содержит железо с переменной валентностью (Fe3+ в окисленной форме и Fe2+ в восстановленной форме). Цитохром с является водорастворимым соединением и располагается на периферии внутренней митохондриальной мембраны в гидрофильной фазе. Биологическая роль цитохрома с - перенос электронов в дыхательной цепи от комплекса III к комплексу IV.

14.1.4. Промежуточные переносчики электронов в дыхательной цепи расположены в соответствии с их окислительно-восстановительными потенциалами. В этой последовательности способность отдавать электроны (окисляться) убывает, а способность присоединять электроны (восстанавливаться) возрастает. Наибольшей способности отдавать электроны обладает НАДН, наибольшей способностью присоединять электроны - молекулярный кислород.

На рисунке 14.3 представлено строение реакционноспособного участка некоторых промежуточных переносчиков протонов и электронов в окисленной и восстановленной форме и их взаимопревращение.



Рисунок 14.3. Взаимопревращения окисленных и восстановленных форм промежуточных переносчиков электронов и протонов.

14.1.5. Механизм синтеза АТФ описывает хемиосмотическая теория (автор - П. Митчелл). Согласно этой теории, компоненты дыхательной цепи, расположенные во внутренней митохондриальной мембране, в ходе переноса электронов могут «захватывать» протоны из матрикса митохондрий и передавать их в межмембранное пространство. При этом наружная поверхность внутренней мембраны приобретает положительный заряд, а внутренняя - отрицательный, т.е. создаётся градиент концентрации протонов с более кислым значением рН снаружи. Так возникает трансмембранный потенциал (ΔµН+ ). Существует три участка дыхательной цепи, на которых он образуется. Эти участки соответствуют I, III и IV комплексам цепи переноса электронов (рисунок 14.4).


Рисунок 14.4. Расположение ферментов дыхательной цепи и АТФ-синтетазы во внутренней мембране митохондрий.

Протоны, выведенные в межмембранное пространство за счёт энергии переноса электронов, снова переходят в митохондриальный матрикс. Этот процесс осуществляется ферментом Н+ -зависимой АТФ-синтетазой (Н+ -АТФ-азой). Фермент состоит из двух частей (см. рисунок 10.4): водорастворимой каталитической части (F1 ) и погружённого в мембрану протонного канала (F0 ). Переход ионов Н+ из области с более высокой в область с более низкой их концентрацией сопровождается выделением свободной энергии, за счёт которой синтезируется АТФ.

14.1.6. Энергия, аккумулированная в форме АТФ, используется в организме для обеспечения разнообразных биохимических и физиологических процессов. Запомните основные примеры использования энергии АТФ:

1) синтез сложных химических веществ из более простых (реакции анаболизма); 2) сокращение мышц (механическая работа); 3) образование трансмембранных биопотенциалов; 4) активный транспорт веществ через биологические мембраны.

Поступают в дыхательную цепь, где проходят через ряд этапов, опускаясь постепенно на все более низкие энергетические уровни, и акцептируются соединением, служащим конечным акцептором электронов. Перенос электронов приводит к значительному изменению свободной энергии в системе. В наиболее совершенном виде и единообразии дыхательная цепь предстает у эукариот , где она локализована во внутренней мембране митохондрий . У эубактерий дыхательные цепи поражают разнообразием своей конкретной организации при сохранении принципиального сходства в строении и функционировании.

Дыхательные электронтранспортные цепи состоят из большого числа локализованных в мембране переносчиков, с помощью которых электроны передаются или вместе с протонами, т.е. виде атомов водорода, или без них. Компонентами цепи, локализованными в мембране, являются переносчики белковой ( флавопротеины , FeS-белки , цитохромы) или небелковой ( хиноны) природы. Флавопротеины и хиноны осуществляют перенос атомов водорода, а FeS-белки и цитохромы - электронов.

При изучении дыхательных цепей особенно интересны два связанных с мембраной флавопротеина : сукцинатдегидрогеназа, катализирующая окисление сукцината в ЦТК , и НАД(Ф)*Н2-дегидрогеназа, катализирующая восстановление своей флавиновой простетической группы, сопряженное с окислением НАД(Ф)*Н2.

Участие в дыхательном электронном транспорте принимают белки, содержащие железосероцентры ( рис. 58). Они входят в состав некоторых флавопротеинов, например сукцинат и НАД(Ф)*Н2-дегидрогеназ, или же служат в качестве единственных простетических групп белков . Дыхательные цепи содержат большое число FeS-центров . В митохондриальной электронтранспортной цепи функционирует, вероятно, около дюжины таких белков. В зависимости от строения FeS-центры могут осуществлять одновременный перенос 1 или 2 электронов, что связано с изменением валентности атомов железа.

Хиноны - жирорастворимые соединения, имеющие длинный терпеноидный "хвост", связанный с хиноидным ядром, способным к обратимому окислению - восстановлению путем присоединения 2 атомов водорода ( рис. 93 , В). Наиболее распространен убихинон , функционирующий в дыхательной цепи на участке между флавопротеинами и цитохромами . В отличие от остальных электронных переносчиков хиноны не связаны со специфическими белками. Небольшой фонд убихинона растворен в липидной фазе мембран.

Цитохромы , принимающие участие на заключительном этапе цепи переноса электронов, представляют собой группу белков, содержащих железопорфириновые простетические группы ( гемы). С помощью цитохромов осуществляется перенос электронов, в процессе которого меняется валентность железа:

Fe++ переходит обратимо в Fe+++ + e

В митохондриях обнаружено пять цитохромов (b, с, с1, а, а3), различающихся между собой спектрами поглощения и окислительно- восстановительными потенциалами. Различия по этим параметрам обусловлены белковыми компонентами цитохромов, природой боковых цепей их порфиринов и способом присоединения гема к белкам. Конечные цитохромы (а+а3) передают электроны на молекулярный кислород, представляя собой собственно цитохромоксидазу, в реакционном центре которой содержатся помимо двух гемов два атома меди. Образование воды имеет место при переносе на молекулу кислорода 4 электронов. Некоторые цитохромоксидазы осуществляют перенос на О2 только 2 электронов, следствием чего является возникновение перекиси водорода . Перекись водорода далее разрушается каталазой или пероксидазой.

Таким образом, дыхательная цепь переноса электронов в митохондриях состоит из большого числа промежуточных переносчиков, осуществляющих электронный транспорт с органических субстратов на О2. Последовательность их расположения, представленная на рис. 94 , подтверждается различного рода данными: значениями окислительно- восстановительных потенциалов переносчиков, ингибиторным анализом.

Обнаружены ингибиторы, специфически действующие на определенные участки дыхательной цепи. Амитал и ротенон блокируют перенос электронов на участке до цитохрома b, действуя предположительно на НАД(Ф)*Н2- дегидрогеназу. Антимицин A (антибиотик, продуцируемый Streptomyces) подавляет перенос электронов от цитохрома b к цитохрому с1. Цианид , окись углерода и азид блокируют конечный этап переноса электронов от цитохромов а+а3 на молекулярный кислород, ингибируя цитохромоксидазу. Если блокировать перенос электронов в электронтранспортной цепи определенными ингибиторами, то переносчики, находящиеся на участке от субстрата до места действия ингибитора, будут в восстановленной, а переносчики за местом действия ингибитора - в окисленной форме.

Какие формы организации дыхательной цепи обнаружены у эубактерий, т.е. на определенных подступах к ее окончательному формированию? Группы первично анаэробных хемогетеротрофов не имеют развитой системы связанного с мембранами электронного транспорта. Полностью сформированной системой дыхательного электронного транспорта обладают фотосинтезирующие эубактерии.